Asymptotic agreement of moments and higher order contraction in the Burgers equation
نویسندگان
چکیده
The purpose of this paper is to investigate the relation between the moments and the asymptotic behavior of solutions to the Burgers equation. The Burgers equation is a special nonlinear problem that turns into a linear one after the Cole-Hopf transformation. Our asymptotic analysis depends on this transformation. In this paper an asymptotic approximate solution is constructed, which is given by the inverse Cole-Hopf transformation of a summation of n heat kernels. The k-th order moments of the exact and the approximate solution are contracting with order O ( ( √ t)k−2n−1+1/p) in Lp-norm as t → ∞. This asymptotics indicates that the convergence order is increased by a similarity scale whenever the order of controlled moments is increased by one. The theoretical asymptotic convergence orders are tested numerically.
منابع مشابه
Periodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملOn the Rate of Convergence and Asymptotic Profile of Solutions to the Viscous Burgers Equation
In this paper we control the first moment of the initial approximations and obtain the order of convergence and the asymptotic profile of a general solution by two explicit “canonical” approximations: a diffusive N-wave and a diffusion wave solution. The order of convergence of both approximations is O(t1/(2r)−3/2) in Lr norm, 1 ≤ r ≤ ∞, as t → ∞, which is faster than the well-known classical c...
متن کاملNumerical solution of non-planar Burgers equation by Haar wavelet method
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...
متن کاملA nonlinear second order field equation – similarity solutions and relation to a Bellmann-type equation - Applications to Maxwellian Molecules
In this paper Lie’s formalism is applied to deduce classes of solutions of a nonlinear partial differential equation (nPDE) of second order with quadratic nonlinearity. The equation has the meaning of a field equation appearing in the formulation of kinetic models. Similarity solutions and transformations are given in a most general form derived to the first time in terms of reciprocal Jacobian...
متن کامل